250 research outputs found

    A Simple Parametric Classification Baseline for Generalized Category Discovery

    Full text link
    Generalized category discovery (GCD) is a problem setting where the goal is to discover novel categories within an unlabelled dataset using the knowledge learned from a set of labelled samples. Recent works in GCD argue that a non-parametric classifier formed using semi-supervised kk-means can outperform strong baselines which use parametric classifiers as it can alleviate the over-fitting to seen categories in the labelled set. In this paper, we revisit the reason that makes previous parametric classifiers fail to recognise new classes for GCD. By investigating the design choices of parametric classifiers from the perspective of model architecture, representation learning, and classifier learning, we conclude that the less discriminative representations and unreliable pseudo-labelling strategy are key factors that make parametric classifiers lag behind non-parametric ones. Motivated by our investigation, we present a simple yet effective parametric classification baseline that outperforms the previous best methods by a large margin on multiple popular GCD benchmarks. We hope the investigations and the simple baseline can serve as a cornerstone to facilitate future studies. Our code is available at: https://github.com/CVMI-Lab/SimGCD.Comment: Code: https://github.com/CVMI-Lab/SimGC

    Implementing the CSILE/KB Program of University of Toronto in English Teaching in China

    Get PDF
    This paper first proposes that Aims of English Teaching should go beyond communicative competence according to Bloom's taxonomy. Then it mainly analyzes that teaching English as a foreign language in China can learn from CSILE/KB Program of University of Toronto in terms of goal setting, active roles of thinking scaffolding and comprehensive English competence acquirement.To bring TEFL to a new stage,the integration of TEFL with KB and MOOCS is put forward and some suggestions are made in the end

    Global Texture Enhancement for Fake Face Detection in the Wild

    Full text link
    Generative Adversarial Networks (GANs) can generate realistic fake face images that can easily fool human beings.On the contrary, a common Convolutional Neural Network(CNN) discriminator can achieve more than 99.9% accuracyin discerning fake/real images. In this paper, we conduct an empirical study on fake/real faces, and have two important observations: firstly, the texture of fake faces is substantially different from real ones; secondly, global texture statistics are more robust to image editing and transferable to fake faces from different GANs and datasets. Motivated by the above observations, we propose a new architecture coined as Gram-Net, which leverages global image texture representations for robust fake image detection. Experimental results on several datasets demonstrate that our Gram-Net outperforms existing approaches. Especially, our Gram-Netis more robust to image editings, e.g. down-sampling, JPEG compression, blur, and noise. More importantly, our Gram-Net generalizes significantly better in detecting fake faces from GAN models not seen in the training phase and can perform decently in detecting fake natural images

    DODA: Data-oriented Sim-to-Real Domain Adaptation for 3D Indoor Semantic Segmentation

    Full text link
    Deep learning approaches achieve prominent success in 3D semantic segmentation. However, collecting densely annotated real-world 3D datasets is extremely time-consuming and expensive. Training models on synthetic data and generalizing on real-world scenarios becomes an appealing alternative, but unfortunately suffers from notorious domain shifts. In this work, we propose a Data-Oriented Domain Adaptation (DODA) framework to mitigate pattern and context gaps caused by different sensing mechanisms and layout placements across domains. Our DODA encompasses virtual scan simulation to imitate real-world point cloud patterns and tail-aware cuboid mixing to alleviate the interior context gap with a cuboid-based intermediate domain. The first unsupervised sim-to-real adaptation benchmark on 3D indoor semantic segmentation is also built on 3D-FRONT, ScanNet and S3DIS along with 7 popular Unsupervised Domain Adaptation (UDA) methods. Our DODA surpasses existing UDA approaches by over 13% on both 3D-FRONT β†’\rightarrow ScanNet and 3D-FRONT β†’\rightarrow S3DIS. Code will be available
    • …
    corecore